4.2 Properties of Visible Light

Look through pages 144-148. Look at the headings of the sections, the bolded words or the pictures. Write down as many words that come to mind about what we will be learning about.

Wave Model of Light

Pictures waves traveling as a \qquad . Light is a type of \qquad that travels through empty \qquad and transfers \qquad from one place to another. \qquad is a wave you can see.

Refraction of Light

When one wave passes from one material to another - if the \qquad and
\qquad that light travels in is different in the two materials, the wave will be
\qquad -.
\qquad is the bending or changing or direction of a wave as it passes form one material to another.

Light waves are considered \qquad . When they pass through a prism, the different wavelengths are refracted by different amounts. This allows different colours to emerge from the prism.

Colours of the Rainbow

\qquad also refract light. The human eye can distinguish \qquad of colours.

In order of \qquad wavelength and \qquad frequency the colours are:

Red	Wavelength:
Orange	Wavelength:
Yellow	Wavelength:
Green	Wavelength:
Blue	Wavelength:
Indigo	Wavelength:
Violet	Wavelength:

These are called the \qquad .

The colours of the rainbow are abbreviated into a person's name: \qquad

Complete BLM 2-5.

Producing the Visible Spectrum

Issac Newton (17th Century) used a \qquad and by shinning white light onto it, he created the \qquad . He determined the different colours must already to present in the light.

Next, he passed the \qquad through more prisms. He produced and concluded that white light is produced from mixing all the colours.

IF ONE colour is removed it will no longer create white light.

Colour and Reflection

Reflection occurs when \qquad Some colours are \qquad and others are \qquad only the reflected colours can be seen.

When no source of light is present, objects appear \qquad . It is because objects do not produce their own light.

Only three colours are needed to produce all colours of the rainbow:
-
-
-

These are called the \qquad .

Adding all three together in the proper amounts will create \qquad .

The three secondary colours are:
-
-
-

Mixing these secondary colours (or \qquad) in any combination will create all colours used today.

These three colours are commonly used as the primary colours in painting and predates modern scientific colour theory.

Complete Pg. 58 in your Student Workbook.

