4.2 Properties of Visible Light

Look through pages 144-148. Look at the headings of the sections, the bolded words or the pictures. Write down as many words that come to mind about what we will be learning about.

Wave Model of Light

Pictures waves traveling as a _____. Light is a type of _____ that travels through empty ______ and transfers ______ from one place to another. ______ is a wave you can see.

Refraction of Light

When one wave passes from one material to another - if the _____ and ____ that light travels in is different in the two materials, the wave will be

_____ is the bending or changing or direction of a wave as it passes form one material to another.

Light waves are considered ______. When they pass through a prism, the different wavelengths are refracted by different amounts. This allows different colours to emerge from the prism.

Colours of the Rainbow

also refract light. The human eye can distinguish of colours.		
In order of	wavelength and	frequency the colours are:
Red	Wavelength:	
Orange	Wavelength:	
Yellow	Wavelength:	
Green	Wavelength:	
Blue	Wavelength:	
Indigo	Wavelength:	
Violet	Wavelength:	
These are called	the	

The colours of the rainbow are abbreviated into a person's name:

Complete BLM 2-5.

Producing the Visible Spectrum

Issac Newton (17th Century) used a ______ and by shinning white light onto it, he created the ______. He determined the different colours must already to present in the light.

Next, he passed the ______ through more prisms. He produced ______ and concluded that white light is produced from mixing all the colours.

IF ONE colour is removed it will no longer create white light.

Colour and Reflection

Reflection occurs when ______. Some colours are ______, only the reflected colours can be seen.

When no source of light is present, objects appear _____. It is because objects do not produce their own light.

Only three colours are needed to produce all colours of the rainbow:

-	
-	
-	
These are called the	
Adding all three together in the proper amounts will create	·
The three secondary colours are:	
-	
-	
-	
Mixing these secondary colours (or create all colours used today.	_) in any combination will

These three colours are commonly used as the primary colours in painting and <u>predates</u> modern scientific colour theory.

Complete Pg. 58 in your Student Workbook.